336D2/D2 L

Гидравлический экскаватор

Д	виг	ат	елі

 Модель двигателя
 Cat® C9 ACERT™

 Мощность двигателя (ISO 14396)
 209 кВт

 Полезная мощность (SAE J1349/ISO 9249)
 200 кВт

Macca

280 hp

268 hp

Эксплуатационная масса — стандартная ходовая часть	34 489 кг
Эксплуатационная масса — удлиненная ходовая часть	37 086 кг

Отличительные особенности конструкции 336D2/D2 L

Двигатель и гидросистема

Мощный двигатель Cat C9 ACERT, соответствующий требованиям стандартов Агентства по охране окружающей среды США Tier 2, Stage II EC и Tier 2 Китая на выбросы загрязняющих веществ. В сочетании с высокоэффективной гидросистемой этот двигатель обеспечивает превосходную производительность при низком расходе топлива. Машина 336D2/D2 L потребляет на 8 процентов меньше топлива, чем ее предшественницы, перемещая при этом такой же объем материала.

Несущие конструкции

Методы конструирования и производства, применяемые компанией Caterpillar, обеспечивают непревзойденную прочность и долгий срок службы машины в самых тяжелых условиях.

Рабочее место оператора

Просторная кабина обеспечивает отличный обзор и простой доступ к переключателям. Монитор имеет четкий и интуитивно понятный цветной графический дисплей. В целом новая кабина представляет собой комфортное рабочее место, способствующее повышению производительности и эффективности работы.

Уменьшенные затраты на техническое обслуживание

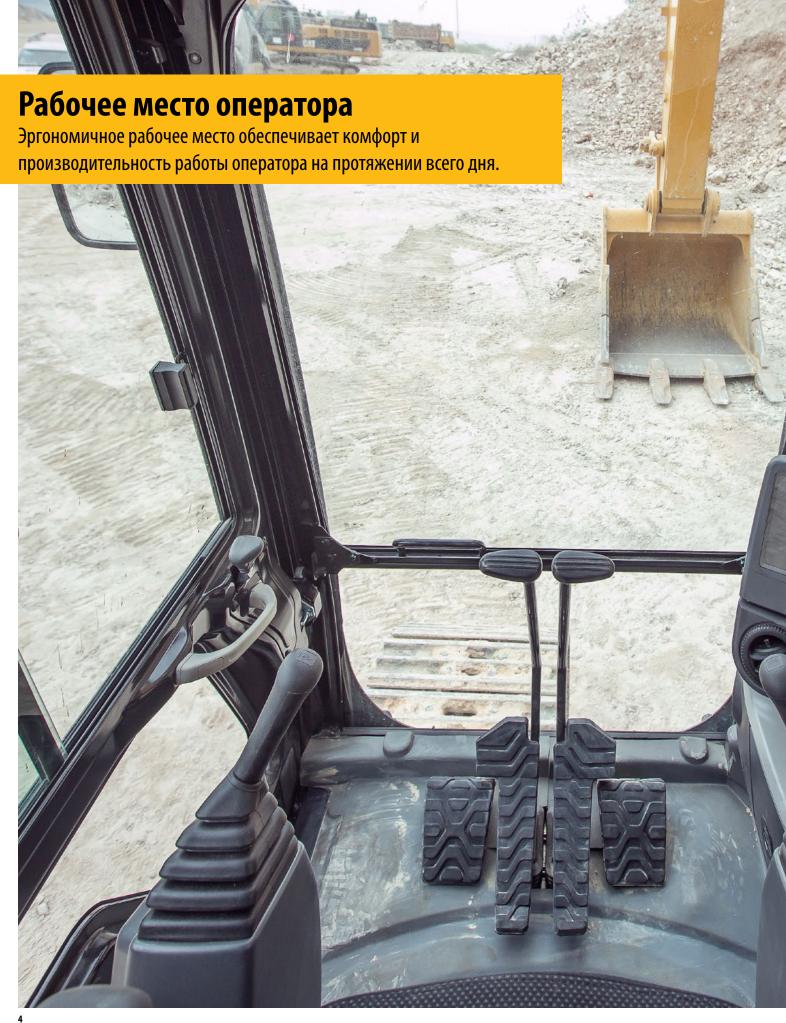
Стандартные операции технического обслуживания можно выполнить быстро и легко, что позволяет снизить затраты на владение машиной. Точки технического обслуживания, расположенные в местах с удобным доступом, продолжительные интервалы между обслуживаниями и улучшенная система фильтрации уменьшают время простоев до минимума.

Полная поддержка клиента

Дилеры Cat предлагают широкий спектр услуг, которые могут предоставляться в рамках соглашения о поддержке клиентов. Такое соглашение можно заключить при приобретении машины.

Комплексные решения

Caterpillar и обширная сеть дилеров предлагают большой выбор решений, предназначенных для соответствия потребностям вашего предприятия.


Содержание

Раоочее место оператора	4
 Двигатель	6
Гидравлика	7
Несущие конструкции	8
Передний рычажный механизм	9
Техническое обслуживание и ремонт	10
Полная поддержка клиента	11
Навесное оборудование	12
Технические характеристики	14
Стандартное и дополнительное оборудование	35

В конструкции машин 336D2/D2 L использованы передовые решения, которые способствуют повышению эффективности выполнения работ за счет снижения расходов на владение и эксплуатацию, превосходной производительности и высокой универсальности машин.

Несущие конструкции и опоры кабины

Между рамой и кабиной установлены виброизоляторы из упруго-вязкой резины, которые снижают вибрацию и уровень шума, за счет чего повышается комфорт. По периметру нижней части кабины установлена толстостенная стальная труба, которая увеличивает сопротивление усталости и вибрации.

Сиденье

Подрессоренное сиденье позволяет подобрать положение для операторов любого телосложения, обеспечивая комфорт и эффективность их работы. Все сиденья оснащаются откидывающейся спинкой, регулировкой продольного положения сиденья, регулировкой высоты и наклона, которые позволяют обеспечить комфорт оператора и производительность его работы.

Джойстик управления и консоль

Легкое управление при помощи джойстика разработано для соответствия естественному положению запястья и руки оператора для максимального комфорта и снижения усталости. Правая и левая консоли джойстиков регулируются в соответствии с личными предпочтениями, что повышает комфорт оператора и производительность на протяжении всего дня.

Климат-контроль

В стандартную комплектацию входит система нагнетающей вентиляции с фильтрацией воздуха и герметичная кабина с избыточным давлением. Расположенный на левой консоли переключатель позволяет выбрать режим подачи свежего воздуха или режим рециркуляции воздуха.

Стекла и стеклоочистители

Для улучшения обзорности все стекла крепятся непосредственно к кабине, что устраняет необходимость в использовании оконных рам. Верхняя часть ветрового стекла открывается, закрывается и складывается на крышу над оператором нажатием одной кнопки. Стеклоочистители с креплением на стойках увеличивают обзор оператора и могут работать как в непрерывном, так и в прерывистом режиме.

Монитор

Цветной жидкокристаллический (LCD) монитор можно регулировать, чтобы свести к минимуму блики. Он отображает информацию на 28 языках для соответствия требованиям современных многонациональных рабочих коллективов.

Стандарты на выбросы загрязняющих веществ

Двигатель Cat C9 ACERT разработан в соответствии с требованиями стандартов Агентства по охране окружающей среды США Tier 2, Stage II EC и Tier 2 Китая на выбросы загрязняющих веществ. В конструкции двигателя используются проверенные, прочные компоненты и точные методы изготовления, что гарантирует владельцам бесперебойную и эффективную эксплуатацию машины.

Система фильтрации

Двигатель оснащен улучшенной системой фильтрации для обеспечения надежности даже при работе с топливом низкого качества. Интервалы технического обслуживания были увеличены, а количество фильтров сокращено для повышения прибыли клиента.

Автоматическое управление частотой вращения коленчатого вала двигателя

Автоматическое управление частотой вращения коленчатого вала двигателя активируется при работе без нагрузки или с малой нагрузкой для снижения частоты вращения коленчатого вала двигателя и минимизации расхода топлива.

Низкие уровни шума и вибрации

Конструкция двигателя Cat C9 АСЕRТ гарантирует тихую работу и низкий уровень вибраций, что способствует повышению комфорта.

Гидросистема

Давление гидросистемы, оснащенной двумя-гидронасосами, позволяет обеспечить непревзойденное усилие копания и производительность. Расположение гидросистемы и ее компонентов позволяет достигать высокого КПД системы. Компактное размещение силовых насосов, гидрораспределителей и гидробака позволило уменьшить длину трубопроводов и соединений между компонентами системы, благодаря чему снизились потери на трение и падение давления в трубопроводах.

Система управления

Отдельный насос контура управления обеспечивает плавное и точное управление передним рычажным механизмом, поворотом платформы и ходовой частью.

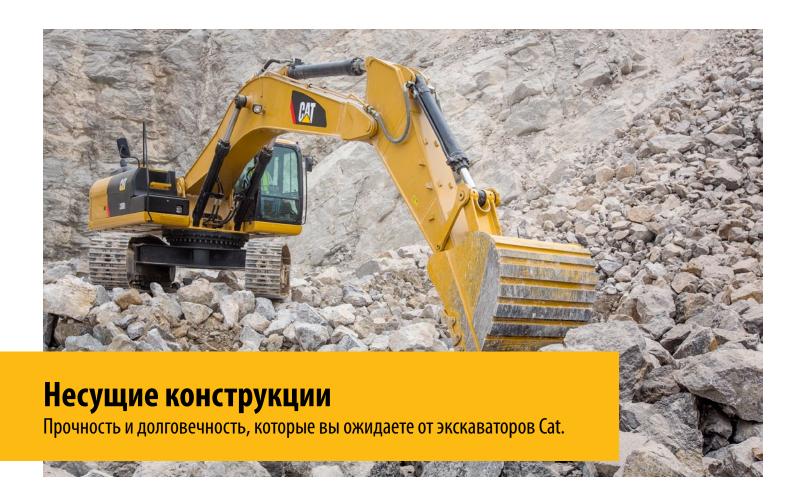
Система сенсорного контроля работы гидрооборудования

Система сенсорного контроля работы гидрооборудования обеспечивает подачу полной мощности двигателя на оба гидронасоса в любых рабочих условиях. Это повышает производительность за счет повышения быстродействия рабочего оборудования и более быстрых и резких разворотов.

Вспомогательный гидрораспределитель

Цепи управления доступны в качестве дополнительного оборудования, позволяющего увеличить показатели универсальности машины. Они обеспечивают возможность эксплуатации оборудования высокого и среднего давления, например ножниц, грейферов, гидромолотов, измельчителей, мультипроцессоров и уплотнителей с виброплитой.

Контур рекуперации энергии стрелы и рукояти


Контур рекуперации энергии стрелы и рукояти позволяет уменьшить затраты мощности, потребляемой в процессе опускания стрелы и втягивания рукояти, в результате чего увеличивается КПД, сокращается продолжительность цикла и уменьшаются потери давления, возрастает производительность, сокращаются эксплуатационные расходы и увеличивается топливная эффективность.

Демпферы гидроцилиндров

Демпферы установлены в штоковых полостях гидроцилиндров стрелы и в обеих полостях гидроцилиндров рукояти. Они обеспечивают поглощение ударных нагрузок, снижение шума и увеличение долговечности компонентов.

Рычаг включения гидросистемы

Когда рычаг включения гидросистемы находится в нейтральном положении, выключаются все функции переднего рычажного механизма, поворотного механизма и ходовой части.

Основная рама

Прочная главная рама сконструирована для эксплуатации в самых тяжелых условиях. Х-образная рама, состоящая из элементов коробчатого сечения, прекрасно выдерживает изгибающие и скручивающие нагрузки, а рамы опорных катков, собранные из штампованных заготовок при помощи сварных соединений, выполняемых сварочными роботами, отличаются высокой прочностью и длительным сроком службы.

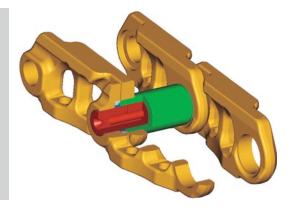
Катки и направляющие колеса

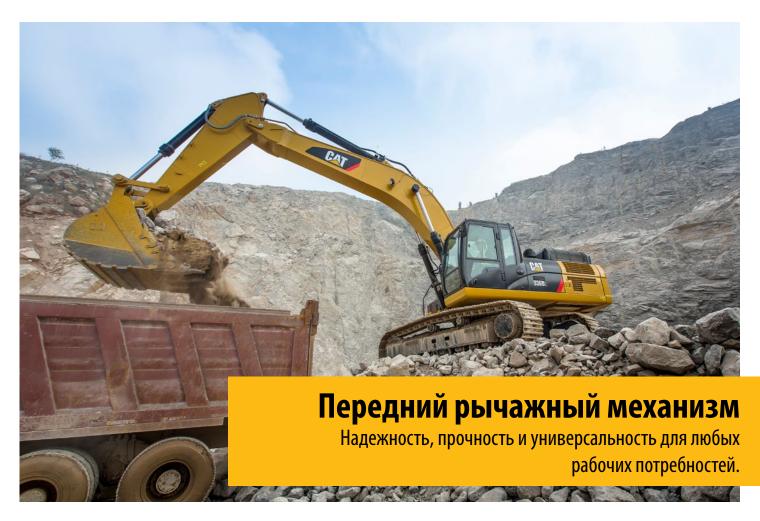
Герметизированные и смазываемые опорные и поддерживающие катки и направляющие колеса обеспечивают увеличенный срок службы и длительное время полезной работы машины.

Стандартная ходовая часть

Стандартная ходовая часть прекрасно подходит для областей применения, требующих частого перемещения машины. Она также идеальна для использования при работе в условиях ограниченного пространства или на неровной каменистой почве.

Удлиненная ходовая часть


Широкая и прочная удлиненная ходовая часть идеально подходит для выполнения операций, требующих максимальной устойчивости и грузоподъемности.


Противовес

Противовес массой 6,0 метрич. тонн (6,6 амер. тонн) подходит для использования при выполнении операций, требующих подъема тяжелых грузов. Он крепится с помощью болтов непосредственно на основную раму. Это позволяет обеспечить высокую прочность конструкции.

Ходовая часть

Прочная ходовая часть Cat обеспечивает превосходную устойчивость машины и поглощение механических нагрузок. В стандартной комплектации 336D2/D2 L предусмотрена смазываемая гусеничная лента. В местах соединения звенья гусеничной ленты герметизированы и смазаны консистентной смазкой. Это позволяет снизить внутренний износ втулок, уменьшить шум при движении и сократить эксплуатационные расходы за счет продления срока службы.

Удлиненный передний рычажный механизм для тяжелых условий эксплуатации

Удлиненный (R) передний рычажный механизм для тяжелых условий эксплуатации (HD) сконструирован для выполнения самых тяжелых работ, таких как загрузка породы или дробление бетона. Удлиненная стрела для тяжелых условий эксплуатации длиной 6,5 м изготовлена из высокопрочной стали и обладает увеличенным коробчатым сечением с внутренними перегородками и дополнительным нижним щитком для увеличения срока службы и прочности.

Для соответствия всем вашим требованиям доступны 3 варианта рукоятей:

- Рукоять длиной 3,9 м прекрасно подойдет для увеличения рабочей зоны машины при выполнении таких операций, как загрузка самосвала и рытье глубоких траншей.
- Рукоять длиной 3,2 м универсальное решение для выполнения широкого ряда работ в строительстве.
- Рукоять длиной 2,8 м подойдет преимущественно для загрузки самосвалов для максимального увеличения усилия отрыва и коэффициента заполнения ковша.

Передний рычажный механизм для массовых земляных работ

Передний рычажный механизм для массовых земляных работ (ME) разработан для увеличения производительности машины за счет более высоких усилий копания и большей вместительности ковшей. Стрела для массовых земляных работ длиной 6,18 м усилена большими сегментами поперечного сечения и внутренними перегородками для увеличения срока службы и прочности.

Удлиненная стрела для массовых земляных работ (МЕ) имеет два варианта рукоятей для соответствия вашим рабочим потребностям:

- Рукоять длиной 2,55 м разработана для выполнения землеройных работ в большом объеме.
- Рукоять длиной 2,15 м подойдет, если вы используете ковши большого объема для загрузки самосвалов. Она способствует максимальному повышению усилия отрыва и увеличению коэффициента заполнения ковша.

Техническое обслуживание и ремонт

Упрощенная конструкция позволяет экономить время и деньги.

Обслуживание с уровня земли

Конструкция и компоновка машины 336D2/D2 L разрабатывались с учетом облегчения работ по техническому обслуживанию. Большинство точек обслуживания доступны с уровня земли, что позволяет быстро и эффективно проводить наиболее важные работы по техническому обслуживанию.

Отсек воздушного фильтра

В воздушном фильтре предусмотрено применение двух фильтрующих элементов для наиболее эффективной очистки воздуха. При засорении воздухоочистителя на экране установленного в кабине монитора появляется предупреждающее сообщение. Необслуживаемые аккумуляторные батареи и выключатель "массы" аккумуляторной батареи являются стандартным оборудованием машины.

Точки смазки

Вынесенный блок смазки, расположенный на стреле, обеспечивает подачу смазки к труднодоступным точкам на стреле и рукояти.

Ограждение вентилятора

Вентилятор радиатора двигателя оснащен стальным кожухом, который обеспечивает максимальную защиту при выполнении технического обслуживания.

Противоскользящая накладка

На ящике для хранения и поворотной платформе имеется противоскользящая накладка, которая предотвращает скольжение обуви рабочих при выполнении техобслуживания. Использование болтов с потайной головкой обеспечивает дополнительную безопасность и снижает риск спотыкания.

Диагностика и контроль

Входящие в стандартную комплектацию клапаны взятия проб позволяют техническому персоналу быстро и легко оценить состояние гидросистемы, моторного масла и охлаждающей жидкости для повышения эффективности технического обслуживания.

Отсек насоса

Дверца отсека с правой стороны поворотной платформы позволяет получить доступ с уровня земли к гидронасосам, фильтрам гидросистемы, масляному фильтру двигателя и топливным фильтрам.

Отсек радиатора

Дверца на левой задней стороне машины обеспечивает доступ к радиатору, маслоохладителю гидросистемы, промежуточному охладителю наддувного воздуха и конденсатору системы кондиционирования. Для выполнения обслуживания с уровня земли радиатор оснащен расширительным бачком и сливным краном.

Техническая поддержка

Чтобы сократить время простоя машин, дилеры Cat используют для поиска имеющихся в наличии деталей всемирную компьютерную сеть. Вы также можете сэкономить средства за счет использования нашей серии восстановленных компонентов.

Выбор машины

Дилеры Cat могут предоставить особые рекомендации и подробное сравнение машин Cat, приобретение которых вы рассматриваете. Это гарантирует, что вы получите машину с характеристиками и навесным оборудованием, которые полностью отвечают вашим рабочим потребностям.

Услуги по техническому обслуживанию

Разработаны специальные программы, гарантирующие сохранение фиксированных расценок на ремонт. Службы наблюдения за состоянием машины и диагностические программы, включающие плановое взятие проб масла и охлаждающей жидкости, а также анализ технического состояния машины помогут избежать внеплановых ремонтов.

Соглашения о поддержке клиентов

Дилеры Cat предлагают самые разнообразные соглашения о поддержке клиентов в соответствии с нуждами заказчиков. В эти соглашения также может входить обслуживание всей машины, включая навесное оборудование, что обеспечивает гарантированную окупаемость вложений клиента.

Замена

Отремонтировать, восстановить или обменять? Дилеры Саt помогут вам подсчитать связанные с этим затраты и сделать правильный выбор.

Навесное оборудование

Копание, использование молота, рыхление и резание с полной уверенностью.

Универсальность и производительность

Каждый тип навесного оборудования Cat разработан для повышения универсальности и производительности вашей машины. Обширный ассортимент оборудования для модели 336D2/D2 L включает в себя ковши, уплотнители, грейферы, мультипроцессоры, рыхлители, первичные измельчители, вторичные измельчители, гидромолоты и гидроножницы.

Ковши и оснастка для землеройных орудий (GET)

Ковши Cat и оснастка для землеройных орудий Cat (GET) разработаны с учетом оптимальной производительности машины и топливной эффективности.

Ковши для коммунальных работ (UD)

Ковши для коммунальных работ (UD) разработаны для выемки слабо спрессованных низкоабразивных материалов, таких как грязь, суглинок и глина.

Ковши общего назначения (GD)

Ковши общего назначения (GD) предназначены для выемки слабо спрессованных среднеабразивных материалов, таких как грязь, суглинок, гравий и глина.

Ковши для тяжелых условий эксплуатации (HD)

Ковши для тяжелых условий эксплуатации (HD) являются хорошим выбором для меняющихся условий работы. Особенно когда извлекаемый материал представляет собой смесь грязи, глины, песка и гравия.

Ковши для особо тяжелых условий эксплуатации (SD)

Ковши для особо тяжелых условий эксплуатации (SD) идеально подходят для выемки высокоабразивных материалов, таких как дробленая порода, каменная мука и гранит.

Ковши для крайне тяжелых условий эксплуатации (XD)

Ковши для крайне тяжелых условий эксплуатации (XD) предназначены для работы с высокоабразивными материалами, такими как кварцевый гранит.

- 1) Ковши для коммунальных работ (UD)
- 2) Ковши общего назначения (GD)
- 3) Ковши для тяжелых условий эксплуатации (HD)
- 4) Ковши для особо тяжелых условий эксплуатации (SD)
- 5) Ковши для крайне тяжелых условий эксплуатации (XD)

Устройства смены навесного оборудования

Устройства для быстрой смены навесного оборудования позволяют одному оператору заменять навесное оборудование за несколько секунд для обеспечения максимальной производительности и универсальности на рабочей площадке. Одна машина может быстро переключаться с одной задачи на другую, а парк машин с аналогичным оборудованием может работать всего с одним комплектом рабочего оборудования.

Устройство для смены навесного оборудования Center-Lock™

Устройство для смены навесного оборудования Center-Lock оснащено системой фиксации (патент ожидается). Хорошо видимый вспомогательный фиксатор позволяет оператору увидеть состояние фиксации устройства на пальце ковша или другого навесного оборудования.

Гидромолоты серии Е

Гидромолоты серии Е отвечают всем ожиданиям клиентов в плане производительности, качества и удобства технического обслуживания. В них воплощен весь производственный опыт компании Caterpillar. Они также отличаются низким уровнем шума, что является значительным преимуществом при работе в городских условиях и других зонах с ограничением уровня шума.

Рыхлители

Долговечные рыхлители Сат изготавливаются из высокопрочных марок стали и способны работать в самых тяжелых условиях. Усиленная конструкция с коробчатым сечением имеет максимальную жесткость и обеспечивает полную передачу мощности машины на разрыхляемый материал. Рыхлители оснащаются сменными наконечниками. Многие модели также имеют сменные защитные элементы стойки.

Грейферы

Грейферы Саt позволяют сделать экскаваторы Сat идеальной машиной для работы с сыпучими материалами, сортировки мусора и сноса строений для расчистки рабочей площадки. Представлен большой выбор модификаций и размеров для выполнения различных работ на экскаваторах.

Мультипроцессоры

Благодаря использованию взаимозаменяемых челюстей мультипроцессоры могут выполнять самые различные работы по сносу зданий. Сменные челюсти позволяют мультипроцессору выполнять дробление, измельчение, а также разнообразные операции, например резку стальной арматуры и резервуаров.

Гидроножницы

Гидроножницы Cat разработаны для использования всех преимуществ, связанных с расходом и давлением гидравлического масла в экскаваторах Cat. Это обеспечивает повышенную производительность без ущерба безопасности и преждевременного износа гидроножниц или базовой машины.

Вторичные измельчители

Механические вторичные измельчители — это высокоэффективные инструменты для переработки бетонного лома. В качестве привода для измельчителя используется гидроцилиндр ковша экскаватора, что устраняет необходимость в отдельном гидроцилиндре, дополнительных гидролиниях и расходах на установку.

Уплотнители

Уплотнители Cat помогают быстро, эффективно и экономично выполнить операции по уплотнению на рабочей площадке.

Первичные измельчители

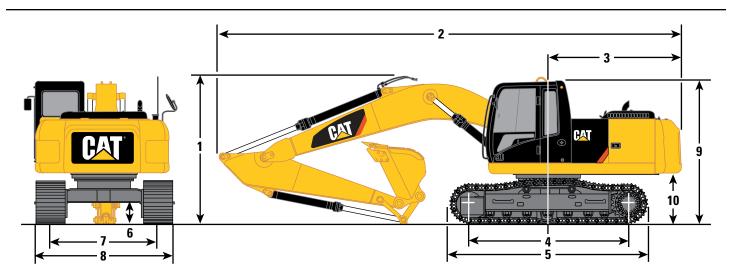
Гидравлические первичные измельчители бетона идеально подходят для разрушения бетонных конструкций в жилых зонах. Один инструмент способен выполнять различные работы по сносу:

- выламывание бетона из закрепленных конструкций;
- измельчение бетона;
- резка арматуры и небольших стальных профилей.

Двигатель		
Модель двигателя	Cat C9 AC	CERT
Мощность двигателя (ISO 14396)	209 кВт	280 hp
Полезная мощность (SAE J1349/ISO 9249)	200 кВт	268 hp
Диаметр цилиндра	112 мм	
Ход поршня	149 мм	
Рабочий объем	8,8 л	

- Двигатель Cat C9 соответствует требованиям по выбросам выхлопных газов Агентства по охране окружающей среды США Tier 2, Stage II EC и Tier 2 Китая на выбросы загрязняющих веществ.
- Заявленная полезная мощность представляет собой мощность на маховике двигателя, оборудованного вентилятором, воздухоочистителем, глушителем и генератором.
- Проверенный на практике двигатель С9 может эффективно работать на высоте до 2300 м над уровнем моря.

Macca	
Эксплуатационная масса	
Стандартная ходовая часть*	34 489 кг
Удлиненная ходовая часть**	37 086 кг

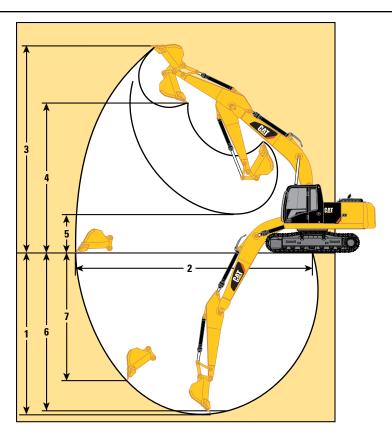

- *Стандартная ходовая часть, удлиненная рукоять 2,8 м, башмаки 600 мм, противовес 6,0 метрич. тонн.
- **Удлиненная ходовая часть, рукоять для массовых земляных работ 2,55 м, башмаки 800 мм, противовес 6,0 метрич. тонн.

Механизм поворота платформы	
Скорость поворота платформы	8,98 об/мин
Момент, развиваемый приводом поворота платформы	108,6 кН∙м

Максимальная скорость хода	30°/70% 4,85 км/ч 300,5 кН
Преодолеваемый подъем Максимальная скорость хода Максимальное усилие на тягово-сцепном устройстве	4,85 км/ч
*	
Максимальное усилие на тягово-спепном устройстве	300,5 кН
Makenmandiloe yemine na im obo eqenilom ye ipone ide	
Гидросистема	
Главная система – максимальный расход (каждый)	265 л/мин
Система поворота – максимальный расход	265 л/мин
Максимальное давление – оборудование	35 000 кПа
Максимальное давление – ход машины	35 000 кПа
Максимальное давление – поворот платформы	29 000 кПа
Система управления – максимальный расход	40 л/мин
Система управления – максимальное давление	4000 кПа
Гидроцилиндр стрелы – диаметр	150 мм
Гидроцилиндр стрелы – ход поршня	1440 мм
Гидроцилиндр рукояти – диаметр	170 мм
Гидроцилиндр рукояти – ход поршня	1738 мм
Гидроцилиндр ковша – внутренний диаметр	150 мм
Гидроцилиндр ковша – ход поршня	1151 мм
Вместимость заправочных емкостей	
Объем топливного бака	620 л
Система охлаждения	40 л
Моторное масло	40 л
Привод поворота платформы	19 л
Бортовой редуктор (каждый)	8 л
Объем рабочей жидкости гидросистемы (включая гидробак)	410 л
Масло в гидробаке	175 л

Размеры

Все размеры указаны приблизительно.


Варианты стрелы	Удлиненная стре	ла повышенной грузопо	Стрела для массовых земляных работ 6,18 м		
Варианты рукояти	R3.9DB	R3.2DB	R2.8DB	M2.55TB	M2.15TB
1 Транспортная высота*	3700 мм	3340 мм	3570 мм	3650 мм	3680 мм
2 Транспортная длина	11 200 мм	11 150 мм	11 210 мм	10 910 мм	11 200 мм
3 Вылет задней части при повороте платформы	3500 мм	3500 мм	3500 мм	3500 мм	3500 мм
4 Расстояние между центрами катков					
Стандартная ходовая часть	3610 мм	3610 мм	3610 мм	3610 мм	3610 мм
Удлиненная ходовая часть	4040 мм	4040 мм	4040 мм	4040 мм	4040 мм
5 Длина гусеничной ленты					
Стандартная ходовая часть	4590 мм	4590 мм	4590 мм	4590 мм	4590 мм
Удлиненная ходовая часть	5020 мм	5020 мм	5020 мм	5020 мм	5020 мм
6 Дорожный просвет**	450 мм	450 мм	450 мм	450 мм	450 мм
7 Ширина колеи					
Стандартная ходовая часть	2590 мм	2590 мм	2590 мм	2590 мм	2590 мм
Удлиненная ходовая часть	2590 мм	2590 мм	2590 мм	2590 мм	2590 мм
8 Транспортная ширина – удлиненная/стандартная	ходовая часть				
Башмаки 600 мм	3190 мм	3190 мм	3190 мм	3190 мм	3190 мм
Башмаки 700 мм	3290 мм	3290 мм	3290 мм	3290 мм	3290 мм
Башмаки 800 мм	3390 мм	3390 мм	3390 мм	3390 мм	3390 мм
9 Высота кабины*	3140 мм	3140 мм	3140 мм	3140 мм	3140 мм
10 Дорожный просвет под противовесом**	1220 мм	1220 мм	1220 мм	1220 мм	1220 мм

^{*}Включая высоту грунтозацепов.

^{**}Без высоты грунтозацепов.

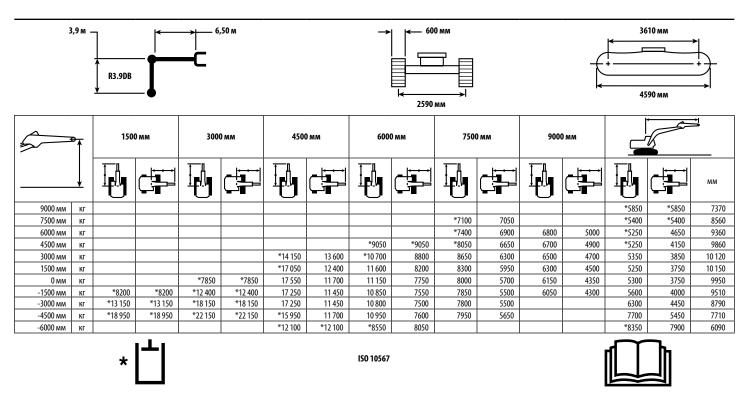
Рабочие зоны

Все размеры указаны приблизительно.

Варианты стрелы	Удлиненная стр	ела повышенной груз 6,50 м	Стрела для массовых земляных работ 6,18 м		
Варианты рукояти	R3.9DB	R3.2DB	R2.8DB	M2.55TB	M2.15TB
1 Максимальная глубина копания	8090 мм	7390 мм	6990 мм	6570 мм	6170 мм
2 Максимальный вылет на уровне земли	11 640 мм	10 920 мм	10 620 мм	10 180 мм	9760 мм
3 Максимальная высота резания	10 710 мм	10 240 мм	10 300 мм	10 070 мм	9740 мм
4 Максимальная высота загрузки	7640 мм	7200 мм	7200 мм	6690 мм	6410 мм
5 Минимальная высота загрузки	2010 мм	2710 мм	3110 мм	3000 мм	3400 мм
6 Максимальная глубина копания с горизонтальным плоским дном длиной 2440 мм	7960 мм	7230 мм	6820 мм	6400 мм	5970 мм
7 Максимальная глубина копания (высота вертикальной стенки)	6700 мм	5830 мм	5770 мм	5340 мм	4710 мм

Масса основных компонентов

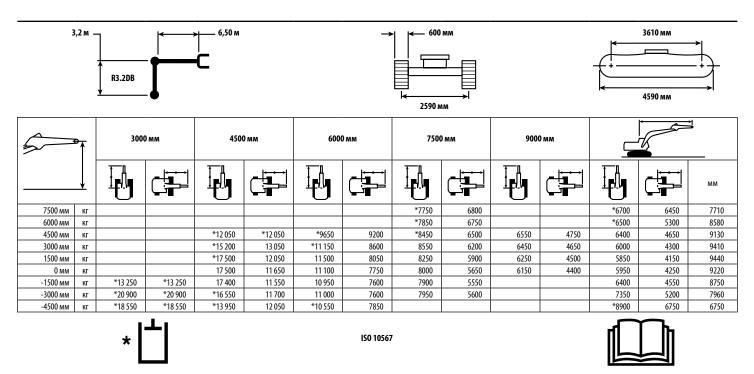
Базовая машина – противовес 6,0 метрич. тонн (с противовесом и без переднего рычажного механизма)	
Стандартная ходовая часть – башмаки 600 мм	26 753 кг
Удлиненная ходовая часть – башмаки 700 мм	27 987 кг
Противовес	
Стандартный противовес	6018 кг
Два гидроцилиндра стрелы	668 кг
Стрела (с гидравлическими линиями, пальцами, гидроцилиндром рукояти)	
Удлиненная стрела повышенной грузоподъемности – 6,50 м	3526 кг
Стрела для массовых земляных работ – 6,18 м	3294 кг
Рукоять (с гидравлическими линиями, пальцами, рычажным механизмом и гидроцилиндром ковша)	
R3.9DB	2089 кг
R3.2DB	2015 кг
R2.8DB	1907 кг
M2.55TB	2024 кг
M2.15TB	1949 кг
Башмаки гусеничной ленты (стандартной ходовой части/на каждой гусенице)	
Башмаки с тройными грунтозацепами шириной 600 мм	1867 кг
Башмаки с тройными грунтозацепами шириной 700 мм	2016 кг
Башмаки с тройными грунтозацепами шириной 800 мм	2330 кг
Башмаки гусеничной ленты (удлиненной ходовой части/на каждой гусенице)	
Башмаки с тройными грунтозацепами шириной 600 мм	2033 кг
Башмаки с тройными грунтозацепами шириной 700 мм	2196 кг
Башмаки с тройными грунтозацепами шириной 800 мм	2538 кг


Эксплуатационные массы и давление на грунт

		336D2 — ст	андартная ходовая час	сть – противовес 6,0 ме	трич. тонн		
		Башмаки стройными грунтозацепами шириной 600 мм		Башмаки стройными грунтозацепами шириной 700 мм		Башмаки с тройными грунтозацепами шириной 800 мм	
Удлиненная стрела повышен	ной грузоподъемности – 6,50 м						
R3.9DB	34 671 кг	71,7 кПа	34 969 кг	62,0 кПа	35 597 кг	55,2 кПа	
R3.2DB	34 597 кг	71,5 кПа	34 895 кг	61,9 кПа	35 523 кг	55,1 кПа	
R2.8DB	34 489 кг	71,3 кПа	34 787 кг	61,7 кПа	35 415 кг	54,9 кПа	
Стрела для массовых землян	ных работ – 6,18 м						
M2.55TB	35 168 кг	72,7 кПа	35 466 кг	62,9 кПа	36 094 кг	56,0 кПа	
M2.15TB	35 093 кг	72,6 кПа	35 391 кг	62,7 кПа	36 019 кг	55,9 кПа	
		336D2 L – y	длиненная ходовая ча	сть — противовес 6,0 м	етрич. тонн		
	Башмаки с тройны шириноі	ми грунтозацепами й 600 мм	•	ми грунтозацепами й 700 мм	•	ми грунтозацепами й 800 мм	
Удлиненная стрела повышен	ной грузоподъемности – 6,50 м						
R3.9DB	35 579 кг	66,3 кПа	35 905 кг	57,3 кПа	36 589 кг	51,1 кПа	
R3.2DB	35 505 кг	66,1 кПа	35 831 кг	57,2 кПа	36 515 кг	51,0 кПа	
R2.8DB	35 397 кг	65,9 кПа	35 723 кг	57,0 кПа	36 407 кг	50,9 кПа	
Стрела для массовых землян	ных работ – 6,18 м						
M2.55TB	36 076 кг	67,2 кПа	36 402 кг	58,1 кПа	37 086 кг	51,8 кПа	
M2.15TB	36 001 кг	67,1 кПа	36 327 кг	58,0 кПа	37 011 кг	51,7 кПа	

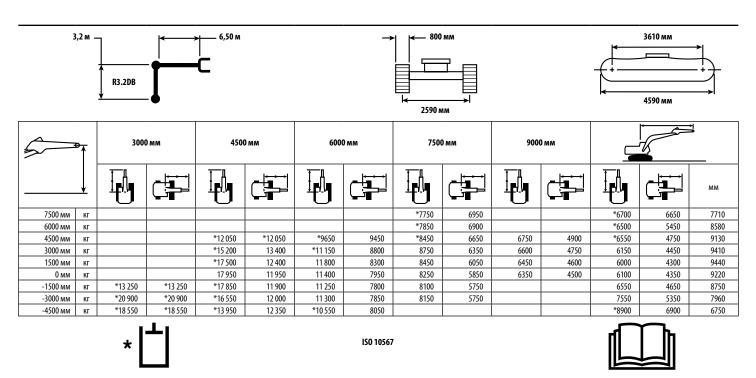
Усилие копания на ковше и рукояти

	Удлиненная стрел	Удлиненная стрела повышенной грузоподъемности – 6,50 м			Стрела для массовых земляных работ – 6,18 м		
	R3.9DB	R3.2DB	R2.8DB	M2.55TB	M2.15TB		
Ковш для тяжелых условий эксплуатации							
Усилие копания на ковше (ISO)	211 кН	211 кН	211 кН	265 кН	265 кН		
Усилие копания на ковше (SAE)	185 кН	185 кН	185 кН	229 кН	229 кН		
Усилие копания на рукояти (ISO)	145 кН	167 кН	186 кН	191 кН	222 кН		
Усилие копания на рукояти (SAE)	141 кН	162 кН	179 кН	183 кН	212 кН		


Грузоподъемность удлиненной стрелы повышенной грузоподъемности – стандартная ходовая часть – противовес: 6,0 метрич. тонн

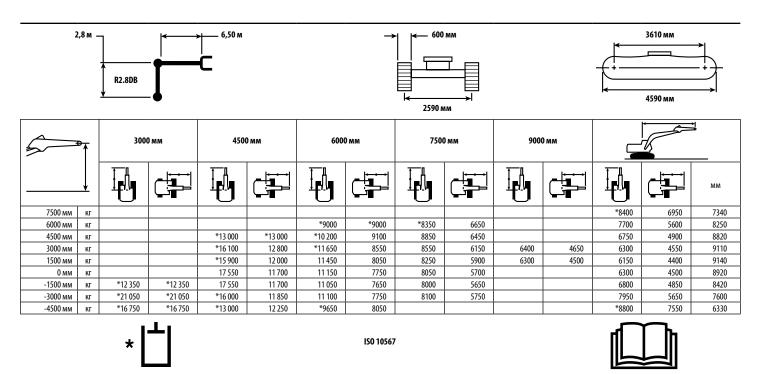
^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности — стандартная ходовая часть — противовес: 6,0 метрич. тонн

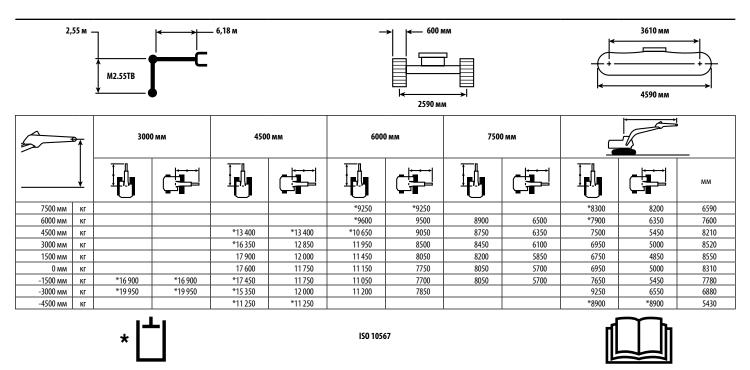
^{*} Обозначает, что нагрузка ограничена грузоподъемностъю гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности – стандартная ходовая часть – противовес: 6,0 метрич. тонн

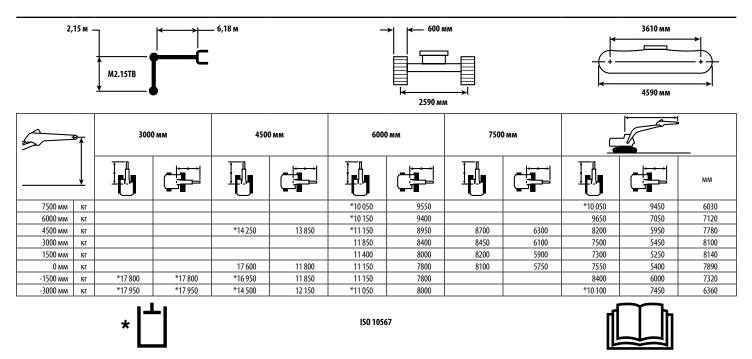
^{*} Обозначает, что нагрузка ограничена грузоподъемностъю гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности — стандартная ходовая часть — противовес: 6,0 метрич. тонн

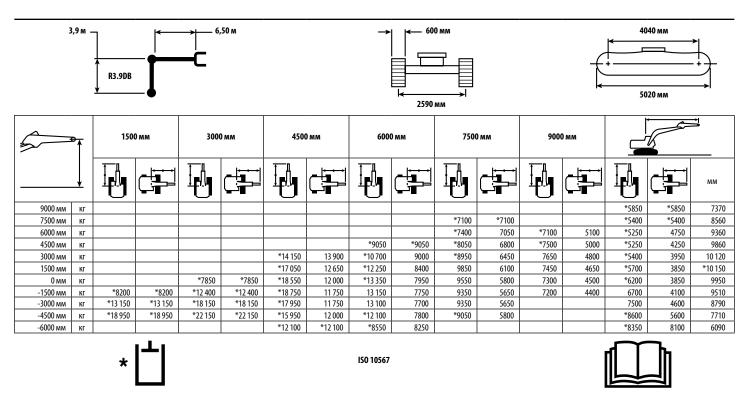
^{*} Обозначает, что нагрузка ограничена грузоподъемностъю гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность стрелы для массовых земляных работ – стандартная ходовая часть – противовес: 6,0 метрич. тонн

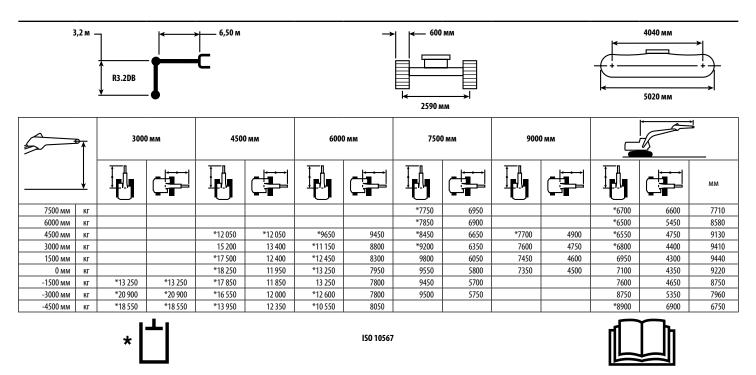
^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность стрелы для массовых земляных работ – стандартная ходовая часть – противовес: 6,0 метрич. тонн

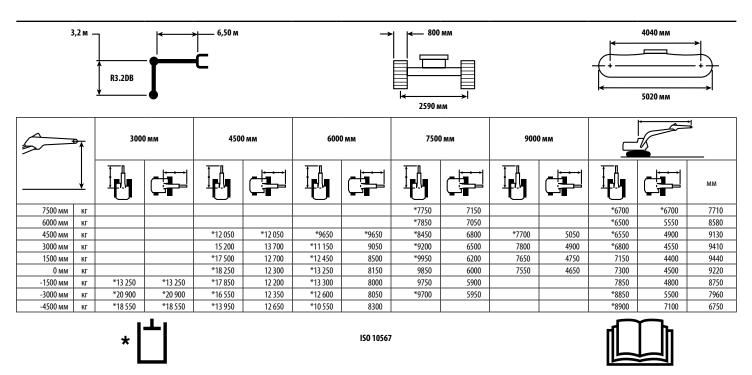
^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех оподъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности – удлиненная ходовая часть – противовес: 6,0 метрич. тонн

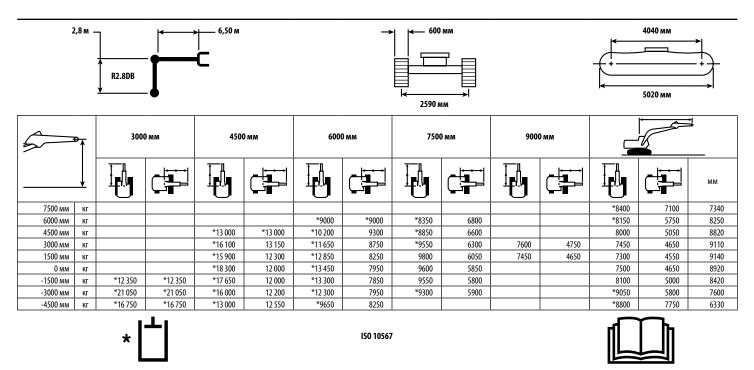
^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности – удлиненная ходовая часть – противовес: 6,0 метрич. тонн

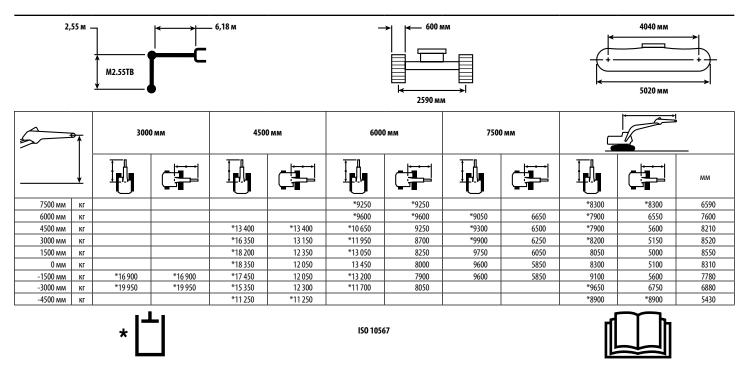
^{*} Обозначает, что нагрузка ограничена грузоподъемностъю гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности – удлиненная ходовая часть – противовес: 6,0 метрич. тонн

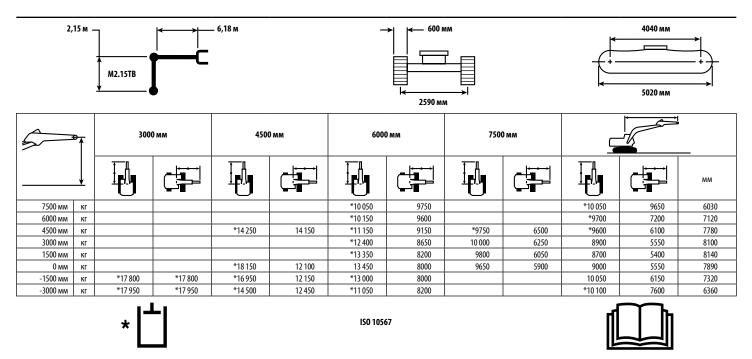
^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность удлиненной стрелы повышенной грузоподъемности — удлиненная ходовая часть — противовес: 6,0 метрич. тонн

^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить польмуную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.


Грузоподъемность стрелы для массовых земляных работ – удлиненная ходовая часть – противовес: 6,0 метрич. тонн

^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех подъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.

Грузоподъемность стрелы для массовых земляных работ – удлиненная ходовая часть – противовес: 6,0 метрич. тонн

^{*} Обозначает, что нагрузка ограничена грузоподъемностью гидравлического механизма подъема, а не опрокидывающей нагрузкой. Приведенные значения соответствуют грузоподъемности гидравлических экскаваторов, предусмотренной стандартом ISO 10567:2007. Они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки. Из всех указанных значений грузоподъемности необходимо вычесть массу всех оподъемных устройств. Значения грузоподъемности приведены для машины, стоящей на прочной ровной поверхности. Использование навесного оборудования для перемещения/подъема объектов может снизить подъемную эффективность машины.

Грузоподъемность сохраняется в пределах $\pm 5\%$ при установке любых доступных башмаков гусеничных лент.

Совместимое навесное оборудование для 336D2*

Тип стрелы	Удлинен	Для массовых земляных работ		
Размер рукояти	R3.9DB	R3.2DB	R2.8DB	M2.55
Гидромолот	H140Es H160Es	H140Es H160Es	H140Es H160Es	H140Es H160Es H180Es
Мультипроцессор	МР20 с челюстями СС МР20 с челюстями СR МР20 с челюстями РР МР20 с челюстями РS МР20 с челюстями S МР20 с челюстями TS	МР20 с челюстями СС MP20 с челюстями СR MP20 с челюстями PP MP20 с челюстями PS MP20 с челюстями S MP20 с челюстями TS	МР20, все модели челюстей MP30 с челюстями СС MP30 с челюстями СR MP30 с челюстями PS	МР30 с челюстями СС МР30 с челюстями СR МР30 с челюстями РР МР30 с челюстями РS МР30 с челюстями S
Дробилка	P325	P325	P325 P335	P335
Измельчитель	P225	P225	P225 P235	P325
Грейферный захват для сортировки и сноса	G325B	G325B G330	G325B G330	G330
Навесные ножницы для резки отходов и разрушения	S325B	S325B	S325B	S365C
Уплотнитель (с виброплитой)	CVP110	CVP110	CVP110	CVP110
Грейфер подрядчика	G130B	G130B	G130B	
Грейферный захват для мусора Прижимы для ковшей Многочелюстные грейферные захваты				
Грабли-скребки			доступно для машины 336D2	
Устройство для смены навесного оборудования Center-Lock	Для выбор	а соответствующей конфиг	урации обратитесь к вашему д	цилеру Cat.
Устройство для быстрой смены навесного оборудования CW				

Совместимое навесное оборудование для 336D2 L*

Тип стрелы	Удлине	нная, повышенной грузоподъемн	ости (HD)	Для массовых земляных работ
Размер рукояти	R3.9DB	R3.2DB	R2.8DB	M2.55
Гидромолот	H140Es H160Es	H140Es H160Es	H140Es H160Es H180Es	H140Es H160Es H180Es
Мультипроцессор	МР20 с челюстями СС МР20 с челюстями СR МР20 с челюстями РР МР20 с челюстями РS МР20 с челюстями S МР20 с челюстями TS	МР20, все модели челюстей MP30 с челюстями СС MP30 с челюстями СR MP30 с челюстями PS MP30 с челюстями S	МР20, все модели челюстей MP30 с челюстями СС MP30 с челюстями СR MP30 с челюстями PS MP30 с челюстями S	МР30 с челюстями СС МР30 с челюстями СR МР30 с челюстями РР МР30 с челюстями РS МР30 с челюстями S МР30 с челюстями TS
Дробилка	P325	P325 P335	P325 P335	P335
Измельчитель	P225	P225 P235	P225 P235	P325
Грейферный захват для сортировки и сноса	G325B	G325B G330	G325B G330	G330
Навесные ножницы для резки отходов и разрушения	S325B	S325B	S325B	S365C
Уплотнитель (с виброплитой)	CVP110	CVP110	CVP110	CVP110
Грейфер подрядчика	G130B	G130B	G130B	
Грейферный захват для мусора Прижимы для ковшей Многочелюстные грейферные захваты				
Грабли-скребки Устройство для смены навесного оборудования Center-Lock Устройство для быстрой смены навесного оборудования CW		Это навесное оборудование до ра соответствующей конфигу	3	

^{*}Предложения могут быть действительны не во всех странах.

Совместимое оборудование зависит от конфигурации экскаватора, установки на пальцы или при помощи устройства для быстрой смены навесного оборудования, крепления на стреле или рукояти, вылета вперед или в сторону. Свяжитесь с дилером Сат для получения информации о доступных в вашем регионе предложениях и подбора совместимого навесного оборудования.

Технические характеристики ковшей и их совместимость

							336	D2			336D)2 L	
					Коэффи-		рела повышенной дъемности		я массовых ых работ		ела повышенной ъемности		я массовых ых работ
	_	Ширина	Вместимость	Macca	циент заполнения	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять M2.15TB	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять M2.15TB
	Рычажный механизм	мм	M ³	КГ	%		башмаками гусени			+	башмаками гусени		
Рычажный механизм DB без у	стройства для	1 быстрой сг	иены навесно	ого оборудо	вания								
Общего назначения (GD)	DB	1350	1,64	1173	100%	•	•			•			
	DB	1650	2,11	1352	100%	Ō	Ð			•	•		
	DB	1800	2,35	1453	100%	Ö	Ŏ			$\overline{\Theta}$	Ö		
	TB	1500	2,14	1872	100%			Θ	•			•	•
	ТВ	1650	2,41	2027	100%				Ð			$\overline{\Theta}$	Ö
Общего назначения (GDC)	DB	750	0,94	952	100%	•				•	•		
	DB	900	1,19	1040	100%	•	•			•	•		
	DB	1050	1,46	1147	100%	•	•			•	•		
	DB	1200	1,73	1232	100%	•	•			•	•		
	DB	1350	2,00	1342	100%	θ	θ			•	•		
	DB	1500	2,27	1451	100%	0	0			Θ	•		
	DB	1650	2,55	1536	100%	\Diamond	\Diamond			0	Θ		
Для тяжелых условий эксплуатации (HD)	DB	750	0,73	1031	100%	•	•			•	•		
	DB	900	0,95	1178	100%	•	•			•	•		
	DB	1050	1,17	1267	100%	•				•			
	DB	1200	1,40	1398	100%	•	•			•	•		
	DB	1350	1,64	1481	100%	Θ	•			•	•		
	DB	1350	1,64	1459	100%	Θ	•			•	•		
	DB	1500	1,88	1600	100%	0	Θ			•			
	DB	1500	1,88	1566	100%	0	Θ			•			
	DB	1650	2,12	1730	100%	0	0			$\mid \hspace{0.1cm} \hspace{0.1cm}$	•		
	DB	1650	2,12	1697	100%	0	0			Θ	•		
	DB	1800	2,36	1851	100%	\Diamond	\Diamond			0	θ		
	TB	1650	2,41	2210	100%			0	Θ			0	Θ
	TB	1800	2,69	2423	100%			\Diamond	0			0	0
	TB	1800	2,69	2381	100%			\Diamond	0			0	0
Для особо тяжелых условий	DB	750	0,73	1096	90%	•	•			•	•		
эксплуатации (SD)	DB	900	0,95	1252	90%	•				•			
	DB	1050	1,17	1353	90%	•	•			•	•		
	DB	1200	1,40	1493	90%	•	•			•	•		
	DB	1350	1,64	1599	90%	•	•			•	•		
	DB	1650	2,15	1827	90%	0	0			•	•		
	TB	1350	1,87	2065	90%			•	•			•	•
	TB	1650	2,41	2385	90%			0	Θ			Θ	Θ
Для особо тяжелых условий эксплуатации повышенной мощности (SDP)	ТВ	1750	2,40	2454	90%			0	θ			Θ	θ
Для крайне тяжелых условий эксплуатации повышенной мощности (XDP)	ТВ	1550	2,00	2516	90%			Θ	•			Θ	•
Максимальная нагр	узка с креплением	и на пальцах (п	олезная нагрузка	+ вес ковша)	кг	4240	4405	5145	5765	5160	5365	5535	6065

Указанные выше нагрузки соответствуют стандарту EN474 для гидравлических экскаваторов, они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки с полностью выдвинутым передним рычажным механизмом на уровне земли, с ковшом, подтянутым к машине.

Значения вместимости приведены в соответствии со стандартом ISO 7451.

Масса ковша указана с учетом массы зубьев общего назначения.

Максимальная плотность материала:

•	2100 Kг/M³	0	1200 кг/м³
•	1800 KF/M³	\Diamond	900 кг/м³
Θ	1500 кг/м ³	Х	Не рекомендуется

Технические характеристики ковшей и их совместимость

							336D2			336D2 L			
					Коэффи-		ела повышенной цъемности		я массовых ых работ		ела повышенной цъемности		н массовых ых работ
		Ширина	Вместимость	Macca	циент заполнения	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять M2.15TB	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять М2.15ТВ
	Рычажный механизм	мм	M ³	кг	%	.	башмаками гусени			+	башмаками гусени		L
Рычажный механизм DB с устр	ройством для (быстрой сме	ны навесног	о оборудова	ния Center-L	.ock							
Общего назначения (GD)	DB	1350	1,64	1173	100%	Θ	Θ			•	•		
	DB	1650	2,11	1352	100%	\Diamond	0			Θ	Θ		
	DB	1800	2,35	1453	100%	\Diamond	\Diamond			0	Θ		
	TB	1500	2,14	1872	100%			0	Θ			Θ	Θ
	TB	1650	2,41	2027	100%			\Diamond	0			0	Θ
Общего назначения (GDC)	DB	750	0,94	952	100%	•	•			•	•		
	DB	900	1,19	1040	100%	•							
	DB	1050	1,46	1147	100%	•	•			•			
	DB	1200	1,73	1232	100%	0	Θ			•			
	DB	1350	2,00	1342	100%	0	0			Θ	•		
	DB	1500	2,27	1451	100%	\Diamond	\Diamond			0	Θ		
	DB	1650	2,55	1536	100%	Θ	\Diamond			0	0		
Для тяжелых условий эксплуатации (HD)	DB	750	0,73	1031	100%	•	•						
	DB	900	0,95	1178	100%	•	•						
	DB	1050	1,17	1267	100%	•	•			•	•		
	DB	1200	1,40	1398	100%	Θ	•			•	•		
	DB	1350	1,64	1481	100%	0	Θ			•	•		
	DB	1350	1,64	1459	100%	0	θ			•	•		
	DB	1500	1,88	1600	100%	\Diamond	0			Θ	Θ		
	DB	1500	1,88	1566	100%	\Diamond	0			Θ	•		
	DB	1650	2,12	1730	100%	\Diamond	\Diamond			0	Θ		
	DB	1650	2,12	1697	100%	\Diamond	\Diamond			0	$\mid \hspace{0.1cm} \ominus \hspace{0.1cm} \mid$		
	DB	1800	2,36	1851	100%	Θ	Θ			0	0		
	TB	1650	2,41	2210	100%			\Diamond	0			0	0
	TB	1800	2,69	2423	100%			\oplus	\Diamond			\Diamond	0
	TB	1800	2,69	2381	100%			\oplus	\Diamond			\Diamond	0
Для особо тяжелых условий	DB	750	0,73	1096	90%	•				•			
эксплуатации (SD)	DB	900	0,95	1252	90%	•	•						
	DB	1050	1,17	1353	90%	•	•			•	•		
	DB	1200	1,40	1493	90%	•	•			•	•		
	DB	1350	1,64	1599	90%	0	Θ						
	DB	1650	2,15	1827	90%	\Diamond	\Diamond			Θ	$\mid \hspace{0.1cm} \ominus \hspace{0.1cm} \mid$		
	TB	1350	1,87	2065	90%			Θ	•			•	•
	TB	1650	2,41	2385	90%			\Diamond	0			0	θ
Для особо тяжелых условий эксплуатации повышенной мощности (SDP)	ТВ	1750	2,40	2454	90%			♦	0			0	0
Для крайне тяжелых условий эксплуатации повышенной мощности (XDP)	ТВ	1550	2,00	2516	90%			0	Θ			0	Θ
Максимальная нагрузка с устройством с	мены навесного об	орудования (по	олезная нагрузка	+ вес ковша)	КГ	3682	3847	4587	5207	4602	4807	4977	5507

Указанные выше нагрузки соответствуют стандарту EN474 для гидравлических экскаваторов, они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки с полностью выдвинутым передним рычажным механизмом на уровне земли, с ковшом, подтянутым к машине.

Значения вместимости приведены в соответствии со стандартом ISO 7451.

Масса ковша указана с учетом массы зубьев общего назначения.

Максимальная плотность материала:

•	2100 KГ/M³	0	1200 кг/м³
•	1800 KГ/M³	\Diamond	900 кг/м³
Θ	1500 кг/м³	χ	Не рекомендуется

Технические характеристики ковшей и их совместимость

							336D2				336D2 L			
					Коэффи-	повы	ая стрела ценной ъемности	Стрела для	я массовых ых работ	повыц	ая стрела ценной ъемности		я массовых ых работ	
	Рычажный	Ширина	Вмести- мость	Macca	циент заполнения	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять M2.15TB	Рукоять R3.2DB	Рукоять R2.8DB	Рукоять M2.55TB	Рукоять M2.15TB	
	механизм	мм	M ³	КГ	%	Сба	шмаками гусен	ичной ленты 600) мм	C 6a	шмаками гусен	ичной ленты 600	ичной ленты 600 мм	
С устройством для смены навесного обо	рудования (CV	V45, CW45s)												
Общего назначения (GD)	DB	1050	1,17	986	100%	•	•			•	•			
	DB	1200	1,40	1064	100%	•	•			•	•			
	DB	1350	1,64	1143	100%	Θ	Θ			•	•			
	DB	1500	1,87	1245	100%	0	θ			•	•			
	DB	1650	2,11	1324	100%	0	0			θ	θ			
Для тяжелых условий эксплуатации (HD)	DB	1350	1,64	1417	100%	0	θ			•	•			
	DB	1500	1,88	1514	100%	0	0			θ	•			
	DB	1650	2,12	1647	100%	\Diamond	\Diamond			θ	Θ			
	TB	1650	2,41	2117	100%			\Diamond	0			0	θ	
Для особо тяжелых условий эксплуатации (SD)	DB	1050	1,17	1272	90%	•	•			•	•			
	DB	1650	2,15	1802	90%	\Diamond	\Diamond			θ	θ			
	ТВ	1350	1,87	1974	90%			•	•			•	•	
	ТВ	1650	2,41	2295	90%			\Diamond	0			0	θ	
Максимальная нагрузка с устройством для быстрой смены навесного оборудования (полезная нагрузка + вес ковша)					КГ	3750	3915	4640	5260	4670	4875	5030	5560	

Указанные выше нагрузки соответствуют стандарту EN474 для гидравлических экскаваторов, они не превышают 87% грузоподъемности гидросистемы или 75% опрокидывающей нагрузки с полностью выдвинутым передним рычажным механизмом на уровне земли, с ковшом, подтянутым к машине.

Значения вместимости приведены в соответствии со стандартом ISO 7451.

Масса ковша указана с учетом массы зубьев общего назначения.

١	Лаксималы	ная пло	тность і	материал	a
---	-----------	---------	----------	----------	---

lacktriangle	2100 KГ/M³	0	1200 кг/м ³
•	1800 KT/M³	\Diamond	900 кг/м³
\ominus	1500 кг/м ³	χ	Не рекомендуется

Стандартное и дополнительное оборудование 336D2/D2 L

Стандартное оборудование

Состав стандартного оборудования может изменяться. За подробными сведениями по этому вопросу обращайтесь к вашему дилеру Cat.

ДВИГАТЕЛЬ

- Дизельный двигатель C9 ACERT
- Возможность работы на высоте до 2300 м над уровнем моря
- Генератор, 65 А
- Подогреватель воздухозаборника двигателя
- Версия высокой мощности с режимом управления мощностью
- Воздушные фильтры с радиальными уплотнениями (фильтр грубой и тонкой очистки)
- Автоматическое управление частотой вращения коленчатого вала двигателя
- Водоотделитель с датчиком уровня воды
- Радиатор с волнистыми ребрами, с пространством для чистки
- Двухскоростной механизм хода
- Топливные фильтры, 2 микрона
- Электрический топливоподкачивающий насос

ГИДРОСИСТЕМА

- Возможность установки дополнительных клапанов и контуров
- Контуры рекуперации энергии стрелы и рукояти
- Демпфирующий клапан механизма поворота
- Автоматический стояночный тормоз механизма поворота

КАБИНА

- Ремень безопасности с инерционной катушкой (шириной 51 мм или 76 мм)
- Раздельное переднее ветровое стекло (70/30 площади)
- Многослойное верхнее ветровое стекло, остальные стекла – закаленные
- Сдвижное верхнее окно двери
- Двухуровневая система кондиционирования воздуха (автоматическая) с функцией оттаивания стекол (герметичная кабина с избыточным давлением)
- Цветной жидкокристаллический дисплей с предупреждающими индикаторами, указателями необходимой замены фильтров/ жидкостей и информацией о рабочем времени
- Рычаг нейтрального положения (блокировки) всех органов управления
- Педали управления ходом со съемными ручными рычагами
- Комплект для установки радиоприемника (стандарт DIN)
- 12 В электропитание 2× 10 А (макс.)
- Два стереодинамика
- Подстаканник
- Крючок для одежды, пепельница, держатель для документации
- Открывающийся люк в крыше
- Моющийся напольный коврик

ходовая часть

- Концевые направляющие щитки направляющих колес и центральной секции
- Буксировочная проушина на раме
- Смазываемая гусеничная лента GLT2, уплотнение из резины

ЭЛЕКТРООБОРУДОВАНИЕ

- Автоматический выключатель
- Фонарь, установленный на стреле, левая и правая сторона
- Освещение, отсек для вещей

БЕЗОПАСНОСТЬ

- Противоугонная система Cat с одним ключом
- Замки дверей и отсеков
- Звуковой сигнал/предупреждающая сирена
- Зеркала заднего вида
- Аварийный выключатель двигателя
- Аварийный выход, заднее окно
- Возможность подключения проблескового маячка

ПРОТИВОВЕС

• Противовес 6,0 метрич. тонн

Дополнительное оборудование

Состав оборудования, устанавливаемого по дополнительному заказу, может изменяться. За подробными сведениями по этому вопросу обращайтесь к вашему дилеру Cat.

ПЕРЕДНИЕ КОМПОНЕНТЫ

- Удлиненная стрела повышенной грузоподъемности
 - Рукоять R3.9DB
 - Рукоять R3.2DB
 - Рукоять R2.8DB
- Стрела для массовых земляных работ
 - Рукоять М2.55ТВ
 - Рукоять М2.15ТВ
- Рычажный механизм ковша
- Рычажный механизм ковша DB (с подъемной проушиной/без нее)
- Рычажный механизм ковша ТВ (с подъемной проушиной/без нее)

ХОДОВАЯ ЧАСТЬ

- Нижний щиток для тяжелых условий эксплуатации
- Щиток поворотного механизма для стандартных/тяжелых условий эксплуатации
- Щитки ходового гидромотора для тяжелых условий эксплуатации
- Направляющие щитки гусеничной ленты, по всей длине
- Конструкция защиты от падающих объектов (FOGS) с болтовым креплением
- Гусеницы с тройными грунтозацепами 600 мм, 700 мм, 800 мм

ГИДРАВЛИКА

- Трубопроводы высокого давления стрелы и рукояти
- Трубопроводы среднего давления стрелы и рукояти
- Трубопроводы устройства для быстрой смены навесного оборудования стрелы, рукояти и ковша
- Устройство управления опусканием стрелы/рукояти
- Контур устройства для быстрой смены навесного оборудования
- Система точного поворота платформы
- Возможность использования биомасла

КАБИНА

- Сиденье с механической подвеской и подголовником
- Сиденье с пневматической подвеской, подголовником и подогревом
- Электропитание, 12 В-10 А с двумя (2) разъемами для прикуривателей
- Защита от дождя для лобового стекла
- Радиоприемник АМ/FМ
- Система быстрого изменения схемы управления
- Третья педаль для движения по прямой

ПРОЧЕЕ ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

- Сигнал хода
- Пусковой комплект для холодного времени года
- Электрический топливозаправочный насос с функцией автоматического отключения

ИНТЕГРИРОВАННЫЕ ТЕХНОЛОГИИ

- Камеры заднего вида
- Подготовка для подключения системы AccuGradeTM
- Cat Product LinkTM

Более подробную информацию о продукции Cat, услугах дилеров и продукции промышленного назначения можно найти на сайте **www.cat.com**

© Caterpillar Inc., 2014 г.

Все права защищены.

Материалы и технические характеристики могут быть изменены без предварительного уведомления. На рисунках могут быть представлены машины, оснащенные дополнительным оборудованием. Информацию об оборудовании, устанавливаемом по заказу, вы можете получить у своего дилера Cat.

CAT, CATERPILLAR, SAFETY.CAT.COM, соответствующие логотипы, "Caterpillar Yellow", фирменная маркировка "Power Edge", а также идентификационные данные корпорации и ее продукции, используемые в данной публикации, являются товарными знаками компании Caterpillar и не могут использоваться без разрешения.

ARHQ7176-01 (07-2014) (Перевод: 09-2014) Вместо публикации ARHQ7176 (ADSD-5, AME, APD, CIS, GCN1)

